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Fair Polyline Networks for Constrained Smoothing
of Digital Terrain Elevation Data

Michael Hofer, Guillermo SapiraSenior Member, IEEEand Johannes Wallner

Abstract—We present a framework for smoothing grid-like
digital terrain elevation data, which achieves fair shape by
means of minimizing an energy functional. The minimization
is performed under the side-condition of hard constraints which
come from available horizontal and vertical accuracy bounds
in the elevation specification. We introduce the framework and
demonstrate the suitability of this method for the tasks of
accuracy-constrained smoothing, feature-preserving smoothing,
and filling of data voids.

Index Terms— Digital terrain elevation data (DTED), surface
smoothing, fair polyline networks, guaranteed error bounds,
topography preserving.

Fig. 1. Iso-height contour plot of original elevation data.

I. INTRODUCTION

MOOTHING digital terrain elevation data (DTED) with
uaranteed error bounds and feature preservation is |
great importance in practical geoscience tasks, both for vis
alization purposes and for post-processing (e.g., compressic
A typical data set we are working with is depicted in Fig. 1
We see that the iso-height contours are often jagged, and fa - .
contours appear (small “islands”). This is due in part to thilgs
high level of detail present in the data and in part to dai.. -
acquisition and generation limitations. The noisy aspect of tfy e ) .
DTED can also be seen by means of a shaded relief (Fig. 2).
After constrained-smoothing with the technique here proposesly. 2. Shaded relief of original data.
iso-height contour lines look like those in Fig. 3. e
The data we use have been provided by the U.S. Nation
Geospatial-Intelligence Agency (NGA). The data have beeg
obtained by the Shuttle Radar Topography Mission (SRTM
in February 2000, one of the most significant space surve
of earth ever undertaken, see elgitp://www2.jpl.nasa.gov/
srtm/and [1]. SRTM is a joint project between NASA, NGA,
the German Aerospace Center (DLR), and the Italian Spag
Agency (ASI). The data complies to the DTED-2 specification
i.e., is given as a uniform gridded matrix of terrain elevatiof
values with a spacing of one arc second (approximately 3
meters). The specification also includes information about
absolute errors (or accuracy), both in horizontal as well as ff§- 3. !so-height contour plot of smoothed elevation data.
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It is of great importance that smoothing digital elevatiobounds (being the only paper to the best of our knowledge,
data respects the given error bounds. In other words, ther work in [8]). Thus, it is perhaps no coincidence that the
smoothed data must be in between the absolute accuraogsent contribution to this topic has its origin in geometry
bounds provided by the specification. This is needed in ordemocessing and geometric modeling. We would also like to
to guarantee that the processed data is in the allowed (by thention that the topic is related tolerance analysislt is
data specification) height and position range. In this papesmmon to locate imprecisely defined entities in computations
we present an algorithm which does just that, and is alby tolerance zones. The most prominent example of this is
capable of filling holes as well as preserving features o compute with intervals instead of with real numbers [10],
a consistent manner. The hard error (or accuracy) bourjd4]. Geometric operations with tolerance zones have been
are represented as tolerance cylinders, where the surfacstiglied later [12]. In that paper, energy-minimizing curves
permitted to move. The smoothing is accomplished by meankich interpolate imprecisely defined points (i.e., tolerance
of an energy minimization technique (fair polyline network)zones) are considered, which is also the topic of [2], and which
constrained to keep the surface inside the tolerance bouridsclosely related to the problem solved in the present paper.
Relaxing or limiting the size of the cylinders, void filling and In the approximation theory literature, the problem of
feature preservation are naturally obtained within the samegularization with constraints has been addressed by Kimel-
framework. The proposed technique can be applied bothdorf and Wahba [13]. They showed how to compute one
smooth the whole data (as a function on the plane) or singutimensional splines with hard vertical-error constraints. While
iso-height lines. this elegant approach can easily be extended to higher di-

The remainder of the paper is organized as follows. Imensions, it doesn’t include the horizontal freedom given
Section Il we briefly describe related prior art. Our contriby the horizontal absolute error. It is also not developed for
butions are put forward in Section Ill. In Section IV, we firsthe additional geometric constraints that are natural to add
define fair polyline networks and then discuss the error bounids our framework. The theory ofotal least squareqg14]
and the smoothing procedure. For validation of the algorithralso addresses the “freedom of motion” of the given data,
we introduce a deviation measure based on a gauge bdualyth in the vertical and horizontal position. In it's original
Furthermore, we show that besides smoothing, our algoritform, although computationally very efficient, the framework
is also capable of preserving features and filling voids. kioes not provide hard constraints (that is, the error is not
Section V we present experimental results, and in Section Yliaranteed to be below the allowed bounds), neither does it

we conclude the paper. include any kind of explicit regularization or geometric terms.
In order to add these important constraints, the problem has
II. PREVIOUS WORK to be transformed into a variational formulation, much of the

Th ¢ . iivated b K it ﬂrvor here introduced. The recent work in [15] presents the
€ present paper 1S motivated by our work on varia |0nE oblem of level-set estimation as a tree optimization one, with

interpolation of subsets [2], on energy-minimizing splines i uaranteed optimality but no guaranteed error bounds.

manifolds [3], and on fair curve and polyline networks in non=
linear geometries [4], [5]. In the following we review literature
related to surface smoothing, guaranteed error bounds, &ndVoid filling

hole filling, with a focus mainly on thgeometry processing It is possible that in some areas, no elevation values are

rather than on the geosciences community. available — we refer to these void areas as ‘holes.” There are
various reasons for holes in the data. They can be caused, e.g.,
A. Surface smoothing by occlusion or poor signal returns.

. . . . The literature on hole filling algorithms for geometric mod-
For data pf a surface like terrain, the filtering o1‘_n0|s%|S roughly fits in three categoriesurface basedvolumetric

and smoothing of the geometry has been of great interégty example basednethods. The article [16] surveys the
Constraints imposed on the smoothing process include {igrature on the first two approaches up to the year 2002. Ideas
preservation of linear and non-linear surface features SUeBm image inpainting are used in the volumetric approach by
as sharp edges, comners, or non-planar curves. This canrPf Filling holes in point set surfaces is also discussed in
_ach|eved for example using t_he s_o-called anisotropic smoo%l@s]_ Recently, example based methods have emerged [19]-
ing methods (cf. [6] and [7]) in this area. There are only féW)q) |t is interesting to note that the example based approach
publications where hard error bounds are incorporated iNOmost closely related to a common practice of filling voids
these geometric regularization methods. Recently, geomeffiCejevation data: One uses data from alternate sources and

active contours have been used as the base of a constrajjigflys them with the data surrounding the void (the ‘fill &
regularization framework for digital elevation data [8]. feather method, cf. [22], [23]).

B. Error bounds and the tolerance aspect [1l. CONTRIBUTIONS OF THE PRESENT PAPER

While there are many contributions concerning error propa- Elevation data of the DTED-2 specification are given as a
gation in digital elevation models (see for example [9] and thesight field over a uniform grid in they-plane, such that
references therein), it is apparently difficult to locate previowery data point has horizontal and vertical error (accuracy)
work on smoothing of terrain data with guaranteed errdmounds. Fig. 4 shows data points; together with their error
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Fig. 5. A polyline network with verticep;; and two families of polylines

A b \ » ‘ -
%" ihij (solid and dotted) representing a height field.

Tij
|

Fig. 4. An initial surface interpolating the given data poiptg. The surface . . .
can be smoothed such that it stays within all tolerance cylindgrsof ~ Of. The given elevation data constitute a rectangular array of

radii ;; and heigh2h;;. The radii and height are specified with the DTEDpOINts: p;; = (x4j, ¥ij,2:5), ¢ = 1,...,M, j = 1,...,N).
information. A different size of the error cylinders can be used to preserVRia define the energy of the data collection to be the sum of
surface features (e.g., ridges) during the smoothing. . . . . .
energies of theV different polylines defined by =const. and
the M different polylines defined by =const.:

bounds in the form of cylinders of revolutiaty;, and an initial N M-1 )
surface that interpolates the given poipts. The objective is E= Zj:l Zizg [Pi—1,; = 2Pij + Pit1,5]

to compute a smooth surface that stays within the given error M N-1 5
margins dictated by the cylinders. + Zi:l Zj:2 IPij—1 = 2pPij + Pij+1ll”  (3)

The framework we propose views the height field OVEA fair polyline network is one which has minimal energy

the xy-plane. as a network con§|st|ng afparallel andy- .among all polyline networks which fulfill a fixed set of
parallel polylines, as shown by Fig. 5. We perform Smoomm@onstraints

by minimizing a discrete bending energy of these polylines,

always respecting the error bounds. Our framework is very

flexible and allows e.g., to use individual error bounds fd8. Error bounds

every data point, fill voids in the data, or smooth only a subsetro gata sets we use consist of poinis; which are

of the data for feature preservation. We later illustrate this é‘&ually spaced in: andy direction. We might, without loss of

hand of several examples. generality, assume that; = g -i andy;; = g - j, whereg is
the grid element size (approximately 30 meters for DTED-
IV. FAIR POLYLINE NETWORKS FOR TERRAIN SMOOTHING  2). The data points contain errors, both in horizontal and
WITH GUARANTEED ERROR BOUNDS vertical direction. If maximum horizontal error of a data point
We first define fair polyline networks and then we show;; is bounded byr;;, and the vertical error by.;;, then
how to extend them for smoothing of digital terrain elevatiothe true location of that data point is within a cylind&;
data with guaranteed error bounds. of diameter2r;; and height2h;;, which is centered in the
given pointp;; = (45, i, 2i;).> Each pointp;; is equipped
A. Fair polyline networks with its own tolerance cyIir_1derZij (Fig. 6 left). We also
refer to these tolerance cylinders esor cylinders They are

Our smoothing procedure is based on minimizing the energy g constraints, which means that the terrain surface we are
of a polyline network. We first define the energy of a S'”9|§eeking has to pass through &l;'s.

polyline, and then the energy of the polyline network as the gig g top right, shows the initial state of the network, only
sum of energies of all the polylines that contribute t0 thgne polyline is shown as a representative of the surface defined
polyline nerork. For a sm_ooth .curw{t), Qeflned in some py the data. Our goal ultimately is to move the points
parameter interval, b], the linearized bending energy (cubicg;,cy that the energy (3) becomes smaller, but the surface stil
spline energy) is defined by passes through the cylinde;. We can achieve this, e.g.,
E(c) = [P ||é(t)||2dt. (1) Dby requiring that the pointp,; themselves do not leavg;;,
o _ . - as illustrated by Fig. 6, at right, center. This condition, which
Its minimizers under mterp'olatlon conditions are the cubig referred to aOption 1, however, is stricter than actually
B-spline curves [24]. Apolyline p = (qi,q2,...,qL), 8 @ necessary. It is certainly sufficient that for each vertex,
discrete curve, possesses a discrete linearized bending enesgg: of the two polylines meeting there meefs; (Fig. 6,
bottom right). This slightly more relaxed condition is referred

E=Y"" a2 A= a1 —2a+ai. () -
C L= Al Qi = di-1— 2Qi T Dit1- to asOption 2
Curve networks and polyline networks, which are the topic . o
2Other error/accuracy models will just define different tolerance shapes,

of [4], [5]3 have energies which are deﬁn?d as the sum Qfinout altering the framework here presented. Cylinders are the appropriate
the energies of the curves or polylines which they are maspe to represent the absolute errors specified with DTED.
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We consider the 1-parameter variatiégfy of the energy (4)
initial state defined by thez coordinatesz;;(t) = z;; + t - gij. The
dependence off on t is quadratic, so it is easy to find a

parametert = to where E; has a minimum. We replace
zij by zi; + to - gi;, but vertices which have moved too far
mij (violating the constraints) are pulled back. This procedure
Zij is iterated. Actually the procedure described here is rather
unsophisticated. Improvements are the following: (iplf is
already in a position where it must not move higher because of
O/OOpti\‘on;\U the boundary conditions, buyt; > 0, we letg;; = 0. (i) the
same with ‘lower’ instead of higher. (iii) As is well known in
Fi. 6. Smoothing heiaht fields via fair bolvii wworks. (Left) Polvii multivariate optimization, the direct gradient descent method is
o e e ot e ¥ ™usually not very effcient. We use a conjugate gradient method

(Right) At top, initial state before optimization. At center, Option 1 offOr updating the direction of descent in each step. (iv) In view
optimization (all vertices stay inside the tolerance cylinders). At bottonof the large number of variables, we use a multigrid method

O_ption 2: The vertices are allowed to leave the cylinders, provided the surfa]agar minimization.
still passes through them. . .
As has already been mentioned, Option 1 leads to a convex
optimization problem, whereas Option 2 leads to a non-convex
C. The smoothing procedure one. Numerical experiments however show that no problems

Minimizing the quadratic function (3) of the variablesWlth Io::al m|n|:na|13 olccuri: so the r?\mtl)un:_ O.f nt(_)n-(?onveX|ty|
Zij, Yij, %5, subject to the constraints mentioned above, isesent seems to be fow. For numerical optimization in general,

guadratic programming problem with non-convex side condi®® €9~ [25].
tions. It _conta_mg to_o many variables for just supmmmg it t%' Measuring the deviation
a generic optimization procedure as, e.g., provided by math-

ematical software. The following properties however allow a !N order to measure the deviation of the smoothed surface,
more direct approach: defined by verticesy;;, from the original datg;;, we use the

(a) If computed withz and y coordinates of the initial {olerance cylindersZ;; as gauge bodies. When scaling;

data alone, the energy would be zero, owing to the regul4fth centerp;;, there is a smallest factox;; such that the

alignment of initial data. We therefore don't expect the poincaled cylinder touches the surface defined by the smoothed
p;; to move very much in: or  direction during optimization. data (which means that the scaled cylinder touches either the

Indeed this is confirmed by numerical experiments. x—parallel_or they-parallel polylines .defined by the smoothed
(b) At each location, the smooth, energy-minimizing terraiffl@t@)- This factor\;; equals zero, if the vertep;; has not
is defined by the input data which are nearby. Thus there is ipved at all, i.e., ilq;; = ps;, and the surface passes through
need for globally minimizing the energy over large data setdij» I Aij < 1.
(c) The condition thatp;; remains insideZ;; (Option 1) Void fill
leads to a convex optimization problem which has a uniqLIJEe‘ od Tifling
solution. As illustrated by Fig. 6 (right), the difference between Missing data may be treated in different ways. There might
Option 1 and Option 2 is not very big. This means that tH2e @ procedure for filling voids which is appropriate for a
optimization problem we have to solve when using Option 2 f€rtain application and which is applied before fair polylines
‘convex enough’ so that we don’t expect a direct minimizatiof'® used for smoothing. It is however worth noting that fair

procedure getting stuck in a local minimum. polylines are also capable of filling voids. 4f; is unknown,
In view of property (a), we only use the coordinates of We first attempt a crude guess at it (any method for filling
the data points as variables for minimization: voids is sufficient for that), and endow the Vertp%j with
N M1 a large tolerance cylindef;;, so that the vertex can move
2 . . . .
E = 2,7:1 Ziﬁ (zic1,j — 221 + 2it1,5) (more) freely during optimization.
M N-1
2
+ Zi:l Zj:2 (Zijo1 — 22+ zij41) (4 V. EXPERIMENTAL RESULTS

) _All data sets described below are conforming to the DTED-

Because of (c), we employ a gradient descent method, wihstandard, with a post spacing of 1 arc second. The horizontal
the original elevation data as initial condition. It is elementarynq vertical error margins arg3 and 5 meters, resp., for all
that the gradient of the energy is given by vertices. This means that after smoothing the surface must pass

(VE)ij = (zi2.; + 2iv2j + 2ij—2 + Ziji2) through vertic_ally oriented toleran.ce cyIinde_r; of base diameter
26 m and height 10m centered in the individual data points.
The size of those cylinders here is the same for all points,
providedi,j > 2 andi < M — 1, j < N — 1. For vertices except for those where no height data are available. Such
near the boundary there are different formulae. points get a large tolerance cylinder, so that they can move

Optimization is basically implemented as follows: First, wéreely. We implemented the smoothing procedur€irn+ and
find a direction of descent, e.g., by lettigg; := —(VE);;. usedMatlab to generate iso-height contour lines.

—d(ziz1,j + Zit15 + Zij—1 + 2zij+1) + 122 5, (5)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, MONTH 200X 5

A. Example 1

This data set has a size 60 x 600 posts and is shown in [&
Fig. 7 as a shaded relief. It represents an area of approximat
24 x 18 km. The original data set has elevation values betwe|;
Zmin =339 M andz.x = 1103 m, and the smoothed data se;
has elevation values between,;, = 337.5m and zax =
1098 m. Details of this example have already been used fi
illustration in Figures 1, 2, and 3.

In order to analyze the asymptotic behavior of the energ
minimization, we run much more iterations than necessary
actual applications. The behavior of the network energy usi
smoothing Option 2 is:

# iterations| 0 10 100 1000
Energy | 4817 727 628 623

Fig. 8 shows a histogram of vertex movements measured|
means of the tolerance cylinders as gauge bodies (cf. Sect'
IV-D). The amount of points whose movement is a certal
percentage of the maximum possible movement is decreas
from left to right, as only to be expected. It is interesting t
note that a substantial number of points actually move as
as possible in order to minimize energy. This is clearly set
by the height of the bar at the extreme right.

Fig. 9 illustrates the movement of vertices during th
smoothing process. The height difference in meters is cod
as a grey value. The dark lines show valleys, which duri
smoothing are lifted, whereas the light areas show ridge
where the smooth terrain is lower than the original one. In bo
cases, the deviation of the smoothed terrain from the origi
one is always consistent with the specified error/accura
bounds.

B. Example 2

Our second example demonstrates the difference betwé:'éh 7. Data set of Example 1 before (top) and after (bottom) smoothing.
the two options mentioned in Section IV-B. Option 1 keep

the data points inside the tolerance cylinders, whereas Optio
ensures that the surface passes through the tolerance cylind
but allows the verticep;; to leave the respective cylinders . L

Zij. The results of smoothing are visualized in Fig. 11 .
. . .. ig. 8. Vertex movement histogram for Example 1.
Minimal elevation values for the original data set, and the two - o _
e I W P A - e
smoothed data sets a481.00 m, 427.28 m, and426.00 m, re- L &% £ o~ P f A

; )
spectively. Maximum elevation values ar24.00 m, 723.27m, \zh ﬁ"

»
and723.27m. =3 --\L‘K
While the general effect of smoothing is clearly visibld S = _

in the contour plots for both options (see Fig. 11(a)—(c)), gﬁm %
is hard to see any difference between options 1 and 2. Toaiis ~Sies, =
effect that vertices may move outside their tolerance cylind®:
is strongest where the terrain is steep. In flatter areas, *° &

vertices cannot move away much from the boundary of f}y t

tolerance cylinder. This means that the maximum deviation % e ‘ %
#ARK,

!
\
‘

the smoothed terrain from the original occurs in those ar ‘Q&-&ff\
where the terrain is steep. In this example, this happens ‘:"‘&
in small parts of the data set. Figures 10(a) and 10(b) illustré& ¥ o = ol

this deviation, where the absolute value of deviation is enco -«";_":1‘:‘ g : ol
in grey values: Maximum deviation is black, minimum ig ty '_w ﬁ{,‘l{u A
. 5 -y P ; q; g -4:
white. : .
The fact that Option 2 causes deviation peaks in small aras o \etex movement visualization for Example 1

causes Fig. 10(b) to look lighter than Fig. 10(a), even if the

3
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Fig. 10. The data set of Example 2. From left: Deviation of smoothed data (Option 1) from original; Deviation of smoothed data (Option 2) from original;
Difference between two options of smoothing; Vertex movement histogram (Top: Option 1, Bottom: Option 2.).

absolute deviation values are greater in general. Fig. 10(
shows the difference between smoothing with Option 1 an
smoothing with Option 2: the absolute value of the heigh
difference is encoded in grey values (black is maximal devi
ation). The vertex movement statistics of Fig. 10(d) do nc _
show absolute height data, but the deviation computed wit &
the tolerance cylinders as gauge bodies.

C. Example 3

The third example uses a small data set of gire x 181,
which contains several holes (Fig. 12). Before smoothing
the missingz coordinates have been guessed by a simpl
averaging procedure. During smoothing, they are allowed 1
move freely. This example illustrates the fact that fair polyline
networks are capable of filling voids in one pass together wit <=
smoothing (Fig. 12(b)).

We are now going to further exploit the great amount o
flexibility which is present in our way of treating constraints.
For instance, features of the terrain which should survive tr
smoothing process with greater accuracy than other parts of t
data set can be given smaller tolerance cylinders. An examg
of this is given by Fig. 12(c), where smoothing has bee|
performed with three different cylinder sizes (diameter/heiglr
in meters): 26/10 for most points, 2/1 for the feature marke
in grey, and an infinite size for voids in the data.

The difference between the two different ways of smoothini__z=
is shown by Figures 13. Here absolute valueg abordinate X
differences are encoded as grey values, with white as minimu
and black as maximum. Data voids are also shown in blac
The small movement of vertices in the feature area shows 1
as white. A shaded relief of absolute value of the differenc
of the two smoothed data sets is shown in Fig. 13(c).

Fig. 11. The data set of Example 2. From bottom to top: (a) Original data.
(b) Smoothing with Option 1. (c) Smoothing with Option 2.
D. Example 4
When working with digital terrain elevation data, one might
want to be able to perform the following two tasks: (a) thél; < z < Ha, where[Hy, H»] is an interval which contains
whole data set is smoothed with guaranteed error bounds. Qe height valugd under consideration and is wide enough to
demand a contour plot of the smoothed terrain is created. (bjpalude the tolerance cylinders.
single smooth contour line at a certain fixed elevatios H Figures 14 and 15 illustrate this procedure: We use a data
is extracted from the original terrain data, always respectisgt of size436 x 263 containing both mountainous and flat
the given error bounds. The first task can be performed bggions betweern,,;, = 1894m and z,,, = 3033m. We
the algorithm described above and is shown by Examples fiiek the 2212m contour for smoothing. The regiof/; <
3. The second task can be done by the same algorithm whichkc Hs with H; = 2192m and H, = 2232m is shown in
acts on a subset of the given data defined by the inequaltg. 14(c). The result of smoothing is shown in Fig. 15(a).
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Fig. 13. The data set of Example 3. From left: (a) Height differences between original and smoothed data. (b) Height differences between original and
smoothed data, with features preserved. (c) Difference between the two smoothed data sets (with and without features preserved).

Fig. 14. The data set of Example 4. From left: (a) Contour lines. (b) Shaded relief with single contour (in white) 2212 m. (c) A neighborhood of
that contour defined by contour lines 2t92 m and2232 m.

Fig. 15. The data set of Example 4. From left: (a) Smoothing the 2212 m contour by smoothing a neighborhood. (b) Smoothed whole data set with its
corresponding 2212 m contour. (c) Deviation from original data when smoothing a neighborhood of a single contour (shaded relief).

For comparison we have also smoothed the whole data set VI. CONCLUSION

and show its c?]rresponrc]iir@l2 ": cfon;om;r in Fi'g.'15(fb). IN " \We have presented an framework which uses fair polyline
Fig. 15(c) we show a shaded relief of the deviation from the. ks for smoothing digital terrain elevation data with

original data when smoothing only a neighborhood of a singlgy 3 anteed error bounds and feature preservation. The algo-
contour. rithm is capable of smoothing the terrain data with tolerance

cylinders of different sizes. These flexible tolerances have two
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advantages in particular: (i) we can preserve features presgef S. Dowding, T. Kuuskivi, and X. Li, “Void fill or SRTM elevation data —
in the data by reducing the size of the tolerance cylinders principles, processes and performance, ABPRS Images to Decision:

in f i th | ith b d fill hol Remote Sensing Foundation for GIS Applicatiodsnerican Society for
in feature areas, (i) the algorithm can be used to fill holes ppqiogrammetry and Remote Sensing, 2004, ASPRS Fall Conference,

present in the original data during the smoothing process. held Sept. 12-16, Kansas City.

Single contour lines are smoothed via processing of a smigfl T. Kuuskivi, J. Lock, X. Li, S. Dowding, and B. Mercer, “Void fil
iahborhood of that contour line of SRTM elevation data: Performance evaluations,’A8PRS Annual
neignbor 0_0 0 8 : ) ) Conference. Geospatial Goes Global: From your neighborhood to the
Another important point we would like to make is that the  whole planet  American Society for Photogrammetry and Remote

smoothina approach here presented easil eneralizes fr Sensing, 2005, held March 7-11 in Baltimore. ISBN 1-57083-076-2.

. . g app P y 9 gg]] G. Farin,Curves and Surfaces for CAGD Morgan Kaufmann, 2002.
height fields to more general surfaces, which are becomipg) ; Nocedal and S. J. Wrighumerical Optimization Springer, 1999,
increasingly important in photogrammetry and remote sensif2g] N. Pfeifer, “A subdivision algorithm for smooth 3D terrain models,’
(see e.qg., [26]). IZSOF(;I;S J. Photogrammetry & Remote Senswa. 59, pp. 115-127,
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